skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gorsky, Adrianna L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stormwater ponds are common features in urbanized landscapes and can suffer from rapid oxygen depletion when thermally stratified or ice-covered. To investigate under-ice oxygen dynamics and drivers of bottom water oxygen saturation, we sampled 20 stormwater ponds in Madison, Wisconsin, USA during the summer of 2021 and winter 2022. The urban ponds ranged in age, shape, size, and depth. We repeatedly took YSI profiles of water temperature, oxygen, and specific conductance 7 times in the summer and 3 times in the winter. Water chemistry variables were collected in the surface waters, habitat surveys were conducted in the summer, and ice/snow thickness was recorded in the winter. We also measured the concentration of greenhouse gases in the surface waters as a consequence to oxygen depletion using the headspace equilibrium method. 
    more » « less
  2. To investigate the effect of a winter with decreased snow cover on greenhouse gas emissions, we experimentally removed snowfall from a small dystrophic lake in northern Wisconsin. As a comparative study, we were able to explore the role of light in under-ice gas dynamics and spring emissions in dimictic lakes. This dataset contains greenhouse gas and temperature/dissolved oxygen profile data collected on South Sparkling and Trout Bog during the winter of 2020 through the winter of 2021. Data were collected between 09 January 2020 and 13 April 2021 in the deep hole of both bogs. Dissolved greenhouse gas concentrations of carbon dioxide and methane were measured using the headspace equilibrium method. 
    more » « less
  3. null (Ed.)
    To determine whether mangrove soil accretion can keep up with increasing rates of sea level rise, we modeled the theoretical, steady-state (i.e., excluding hurricane impacts) limits to vertical soil accretion in riverine mangrove forests on the southwest coast of Florida, USA. We measured dry bulk density (BD) and loss on ignition (LOI) from mangrove soils collected over a period of 12 years along an estuarine transect of the Shark River. The plotted relationship between BD and LOI was fit to an idealized mixing model equation that provided estimates of organic and inorganic packing densities in the soils. We used these estimates in combination with measures of root production and mineral deposition to calculate their combined contribution to steady-state, vertical soil accretion. On average, the modeled rates of accretion (0.9 to 2.4 mm year−1) were lower than other measured rates of soil accretion at these sites and far less than a recent estimate of sea level rise in south Florida (7.7 mm year−1). To date, however, no evidence of mangrove “drowning” has been observed in this region of the Everglades, indicating that assumptions of the linear accretion model are invalid and/or other contributions to soil accretion (e.g., additional sources of organic matter; feedbacks between physical sedimentation processes and biological responses to short-term environmental change) make up the accretion deficit. This exercise highlights the potential positive impacts of hurricanes on non-steady-state soil accretion that contribute to the persistence of neotropical mangroves in regions of high disturbance frequency such as the Gulf of Mexico and the Caribbean region. 
    more » « less